Novel Numerical Methods for Solving the Time - Space Fractional Diffusion Equation in 2 D ∗
نویسندگان
چکیده
In this paper, a time-space fractional diffusion equation in two dimensions (TSFDE2D) with homogeneous Dirichlet boundary conditions is considered. The TSFDE-2D is obtained from the standard diffusion equation by replacing the first-order time derivative with the Caputo fractional derivative tD γ ∗ , γ ∈ (0, 1), and the second order space derivatives with the fractional Laplacian −(−∆)α/2, α ∈ (1, 2]. Using the matrix transfer technique proposed by Ilić et al.[22], the TSFDE-2D is transformed into a time fractional differential system as tD γ ∗u = −KαA u, where A is the approximate matrix representation of (−∆). Traditional approximation of Aα/2 requires diagonalisation of A, which is very time-consuming for large sparse matrices. The novelty of our proposed numerical schemes is that, using either the finite difference method or the Laplace transform to handle the Caputo time fractional derivative, the solution of the TSFDE-2D is written in terms of a matrix function vector product f(A)b at each time step, where b is a suitably defined vector. Depending on the method used to generate the matrix A, the product f(A)b can be approximated using either the preconditioned Lanczos method when A is symmetric or the M-Lanzcos method when A is non-symmetric, which are powerful techniques for solving large linear systems. We give error bounds for the new methods and illustrate their roles in solving the TSFDE-2D. We also derive the analytical solution of the TSFDE-2D in terms of the Mittag-Leffler function. Finally, numerical results are presented to verify the proposed numerical solution strategies.
منابع مشابه
A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملA numerical method for solving a class of distributed order time-fractional diffusion partial differential equations according to Caputo-Prabhakar fractional derivative
In this paper, a time-fractional diffusion equation of distributed order including the Caputo-Prabhakar fractional derivative is studied. We use a numerical method based on the linear B-spline interpolation and finite difference method to study the solutions of these types of fractional equations. Finally, some numerical examples are presented for the performance and accuracy of the proposed nu...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کامل